Package: GaSP (via r-universe)

October 31, 2024

```
or maximum a posteriori (MAP) estimation, run model
     diagnostics, and make predictions, following Sacks, J., Welch,
     W.J., Mitchell, T.J., and Wynn, H.P. (1989) `Design and
     Analysis of Computer Experiments", Statistical Science,
     <doi:10.1214/ss/1177012413>. Perform sensitivity analysis and
     visualize low-order effects, following Schonlau, M. and Welch,
     W.J. (2006), ``Screening the Input Variables to a Computer Model
     Via Analysis of Variance and Visualization",
     <doi:10.1007/0-387-28014-6_14>.
Depends R (>= 3.5.0)
Suggests markdown, rmarkdown, knitr, testthat
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
VignetteBuilder knitr
NeedsCompilation yes
Author William J. Welch [aut, cre, cph]
     (<https://orcid.org/0000-0002-4575-3124>), Yilin Yang [aut]
     (<https://orcid.org/0000-0003-0885-6017>)
Maintainer William J. Welch <will@stat.ubc.ca>
Date/Publication 2024-06-27 09:10:02 UTC
Repository https://wsqlab.r-universe.dev
RemoteUrl https://github.com/cran/GaSP
RemoteRef HEAD
RemoteSha 38efb7ec4e0ac662fa1d3731d60d92a91c4a7a68
```

Title Train and Apply a Gaussian Stochastic Process Model

Description Train a Gaussian stochastic process model of an unknown function, possibly observed with error, via maximum likelihood

Type Package

Version 1.0.6

2 borehole

Contents

borel	nole	Data for the borehole function	
dex			20
	visualize		10
			15
	PlotJointEffects		11
	PlotAll		10
			7
			4
	DescribeX		3
	CrossValidate		3
	borehole		2

Description

Training and test data for the borehole function; see source for background.

Usage

Index

borehole

Format

A list with the following four data frames:

- **x** 8-dimensional input for 40 training runs.
- y Output (the flow) for the 40 training runs in x.
- x_pred 8-dimensional input for 1000 test runs at which to predict y.
- **y_true** Output for the 1000 runs in x_pred.

Source

https://www.sfu.ca/~ssurjano/borehole.html

Cross Validate 3

CrossValidate

Cross-validated predictions for a GaSPModel object.

Description

Compute leave-one-out cross-validated predictions for a GaSPModel object.

Usage

```
CrossValidate(GaSP_model)
```

Arguments

```
GaSP_model Object of class GaSPModel.
```

Value

A data frame with two columns: the cross-validated predictions Pred and their standard errors SE.

Note

RMSE computes the root mean squared error of the predictions. PlotPredictions and PlotResiduals plot the predictions or their residuals; PlotStdResiduals and PlotQQ plot the stanadardized residuals.

Examples

```
borehole_cv <- CrossValidate(borehole_fit)</pre>
```

DescribeX

Describe the input variables.

Description

Describe the input variables to set up integration or summation ranges for Visualize.

Usage

```
DescribeX(
   x_names,
   x_min,
   x_max,
   support = NULL,
   num_levels = NULL,
   distribution = NULL)
```

4 Fit

Arguments

x_names	A vector of character strings containing the names of the input variables.
x_min, x_max	Vectors of the same length as x_names containing the minima and maxima, respectively, of the input variables.
support	Optional vector of character strings of the same length as x_names. Valid strings for a variable are: "Continuous" (continuous between the input's x_min and x_max); "Fixed" (the input's x_min must equal its x_max); and "Grid" (which requires the next argument).
num_levels	An optional vector of integers for the number of levels of each input; must be present if the support argument includes "Grid". An input's number of levels is 0 if it is "Continuous", 1 if it is "Fixed", or > 1 if it is "Grid" to define an equally spaced grid inclusive of the input's x_min and x_max.
distribution	An optional vector of character strings of the same length as x_names to define the weight distributions of the input variables. Valid strings are "Uniform" or "Normal" (ignored for "Fixed" inputs).

Value

A data frame with the following columns: Variable (containing x_names), Min (containing x_min), and Max (containing x_max), plus the optional columns Support (from support), NumberLevels (from num_levels), and Distribution (from distribution).

Note

Does not check against GaSPModel and all characters are CASE SENSITIVE.

Examples

```
borehole_x_names <- colnames(borehole$x) borehole_min <- c(0.05, 100.00, 63070.00, 990.00, 63.10, 700.00, 1120.00, 9855.00) borehole_max <- c(0.15, 50000.00, 115600.00, 1110.00, 116.00, 820.00, 1680.00, 12045.00) borehole_x_desc <- DescribeX(borehole_x_names, borehole_min, borehole_max)
```

Fit

Fit a GaSP model.

Description

Fit (train) a GaSP model.

Fit 5

Usage

```
Fit(
  х,
 у,
  reg_model,
  sp_model = NULL,
  cor_family = c("PowerExponential", "Matern"),
  cor_par = data.frame(0),
  random\_error = c(FALSE, TRUE),
  sp_var = -1,
  error_var = -1,
  nugget = 1e-09,
  tries = 10,
  seed = 500,
  fit_objective = c("Likelihood", "Posterior"),
  theta_standardized_min = 0,
  theta_standardized_max = .Machine$double.xmax,
  alpha_min = 0,
  alpha_max = 1,
  derivatives_min = 0,
  derivatives_max = 3,
  log_obj_tol = 1e-05,
  log_obj_diff = 0,
 lambda_prior = 0.1,
 model_comparison = c("Objective", "CV")
)
```

Arguments

У	A vector or a data frame with one column containing the output (response) training data.
reg_model	The regression model, specified as a formula, but note the left-hand side of the formula is unused; see example.
sp_model	An optional stochastic process model, specified as a formula, but note the left-hand side of the formula and the intercept are unused. The default NULL uses all column names in x.
cor_family	A character string specifying the (product, anisoptropic) correlation-function family: "PowerExponential" for the power-exponential family or "Matern" for the Matern family.
cor_par	An optional data frame containing the correlation parameters with one row per sp_model term and two columns set up as described in GaSPModel Details; only

used to start the first objective optimization (see Details).

A data frame containing the input (explanatory variable) training data.

random_error A boolean for the presence or not of a random (measurement, white-noise) error term.

6 Fit

sp_var, error_var

Starting values of the stochastic process and error variances for the first try to optimize the objective (see Details); valid (i.e., nonnegative) values will only be used if random_error = TRUE. The invalid default value of -1 indicates that a

starting value will be chosen by Fit.

nugget For numerical stability the proportion of the total variance due to random error is

fixed at this value (random_error = FALSE) or bounded below by it (random_error

= TRUE).

tries Number of optimizations of the objective from different random starting points.

seed The random-number seed to generate starting points.

fit_objective The objective that Fit attempts to optimize: "Likelihood" (maximum likelihood

estimation) or "Posterior" (Bayesian maximum a posteriori estimation).

theta_standardized_min, theta_standardized_max

The minimum and maximum of the standardized θ parameter (see Details).

alpha_min, alpha_max

The minimum and maximum of the α parameter of power-exponential.

derivatives_min, derivatives_max

The minimum and maximum of the δ parameter of Matern.

log_obj_tol An absolute tolerance for terminating the optimization of the log of the objec-

tive.

log_obj_diff The critical value for the change in the log objective for informal tests during

optimization of correlation parameters. No testing is done with the default of 0;

a larger critical value such as 2 may give a more parsimonious model.

lambda_prior The rate parameter of an exponential prior for each θ parameter; used only if

fit_objective = "Posterior".

model_comparison

The criterion used to select from multiple solutions when tries > 1: the objective function ("Objective") or leave one out gross validation ("CV")

tive function ("Objective") or leave-one-out cross validation ("CV").

Details

Fit numerically optimizes the profile objective function with respect to the correlation parameters; the mean and overall variance parameters are estimated in closed form given the correlation parameters.

A cor_par data frame supplied by the user is the starting point for the first optimization try. If random_error = TRUE, then sp_var / (sp_var + error_var) is another correlation parameter to be optimized; sp_var and error_var values supplied by the user will initialize this parameter for the first try.

Set random_error = TRUE to estimate the variance of the random (measurement, white-noise) error; a small nugget error variance is for numerical stability.

For term j in the stochastic-process model, the estimate of θ_j is constrained between theta_standardized_min / r_j^2 and theta_standardized_max / r_j^2 , where r_j is the range of term j. Note that Fit returns unscaled estimates relating to the original, unscaled inputs.

GaSPModel 7

Value

A GaSPModel object, which is a list with the following components:

x The data frame containing the input training data.

y The training output data, now as a vector.

reg_model The regression model, now in the form of a data frame.

sp_model The stochastic process model, now in the form of a data frame.

cor_family The correlation family.

cor_par A data frame for the estimated correlation parameters.

random_error The boolean for the presence or not of a random error term.

sp_var The estimated stochastic process variance.

error_var The estimated random error variance.

beta A data frame holding the estimated regression-model parameters.

objective The maximum value found for the objective function: the log likelihood (fit_objective

= "Likelihood") or the log posterior (fit_objective = "Posterior").

cond_num The condition number.

CVRMSE The leave-one-out cross-validation root mean squared error.

References

Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", *Statistical Science*, 4, pp. 409-423, doi:10.1214/ss/1177012413.

Examples

```
x <- borehole$x
y <- borehole$y
borehole_fit <- Fit(
  reg_model = ~1, x = x, y = y, cor_family = "Matern",
  random_error = FALSE, nugget = 0, fit_objective = "Posterior"
)</pre>
```

GaSPModel

Create a GaSPModel object.

Description

Return a template for a GaSPModel object.

8 GaSPModel

Usage

```
GaSPModel(
    x,
    y,
    reg_model,
    sp_model = NULL,
    cor_family = c("PowerExponential", "Matern"),
    cor_par,
    random_error = c(FALSE, TRUE),
    sp_var,
    error_var = 0
)
```

Arguments

x A data frame containing the input (explanatory variable) training data.

y A vector or a data frame with one column containing the output (response) train-

ing data.

reg_model The regression model, specified as a formula, but note the left-hand side of the

formula is unused; see example.

sp_model An optional stochastic process model, specified as a formula, but note the left-

hand side of the formula and the intercept are unused. The default NULL uses all

column names in x.

cor_family A character string specifying the (product, anisoptropic) correlation-function

family: "PowerExponential" for the power-exponential family or "Matern" for

the Matern family.

cor_par A data frame containing the correlation parameters with one row per sp_model

term and two columns (see Details).

random_error A boolean for the presence or not of a random (measurement, white-noise) error

term.

sp_var The stochastic process variance.

error_var The random error variance, with default 0.

Details

The data frame cor_par contains one row for each term in the stochastic process model. There are two columns. The first is named Theta, and the second is either Alpha (power-exponential) or Derivatives (Matern). Let h_j be a distance between points for term j in the stochastic-process model. For power-exponential, the contribution to the product correlation from term j depends on a distance-scale parameter θ_j from the Theta column and a smoothness parameter α_j from the Alpha column; the contribution is $exp(-\theta_j h_j^{2-\alpha_j})$. For example, $\alpha_j=0$ gives the squared-exponential (Gaussian) correlation. The contribution to the product correlation for Matern also depends on θ_j , and the second parameter is the number of derivatives $\delta_j=0,1,2,3$ from the Derivatives column. The contribution is $exp(-\theta_j h_j)$ for $\delta_j=0$ (the exponential correlation), $exp(-\theta_j h_j)(\theta_j h_j+1)$ for $\delta_j=1$, $exp(-\theta_j h_j)((\theta_j h_j)^2/3+\theta_j h_j+1)$ for $\delta_j=2$, and $exp(-\theta_j h_j^2)$ for $\delta_j=3$ (the squared-exponential correlation). Note that $\delta_j=3$ codes for a limiting infinite number of derivatives. This

GaSPModel 9

is not the usual parameterization of the Matern, but it is consistent with power-exponential for the exponential and squared-exponential special cases common to both.

A value should be given to error_var if the model has a random-error term (random_error = TRUE), and a small "nugget" such as 10^{-9} may be needed for improved numerical conditioning.

Value

A GaSPModel object, which is a list with the following components:

x The data frame containing the input training data.

y The training output data, now as a vector.

reg_model The regression model, now in the form of a data frame.

sp_model The stochastic process model, now in the form of a data frame.

cor_family The correlation family.

cor_par The data frame containing the correlation parameters.

random_error The boolean for the presence or not of a random error term.

sp_var The stochastic process variance.

error_var The random error variance.

beta A placeholder for a data frame to hold the regression-model parameters.

objective A placeholder for the maximum fit objective.

cond_num A placeholder for the condition number.

CVRMSE A placeholder for the model's cross-validated root mean squared error.

Note

This function does not excecute Fit and is intended for CrossValidate, Predict and Visualize with models trained otherwise by the user. Placeholders do not need to be specified to excecute these further functions, as they are always recomputed as needed.

References

Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. (1989) "Design and Analysis of Computer Experiments", *Statistical Science*, 4, pp. 409-423, doi:10.1214/ss/1177012413.

Examples

```
x <- borehole$x
y <- borehole$y
theta <- c(
    5.767699e+01, 0.000000e+00, 0.000000e+00, 1.433571e-06,
    0.000000e+00, 2.366557e-06, 1.695619e-07, 2.454376e-09
)
alpha <- c(
    1.110223e-16, 0.000000e+00, 0.000000e+00, 0.000000e+00,
    0.000000e+00, 0.000000e+00, 2.494862e-03, 0.000000e+00
)
cor_par <- data.frame(Theta = theta, Alpha = alpha)</pre>
```

10 PlotAll

```
rownames(cor_par) <- colnames(borehole$x)
sp_var <- 38783.7
borehole_gasp <- GaSPModel(
    x = borehole$x, y = borehole$y,
    reg_model = ~1, cor_family = "PowerExponential",
    cor_par = cor_par, random_error = FALSE,
    sp_var = sp_var
)</pre>
```

PlotAll

Execute PlotPredictions, PlotResiduals, PlotStdResiduals, PlotMainEffects, *and* PlotJointEffects.

Description

Execute PlotPredictions, PlotResiduals and PlotStdResiduals (all applied to cross validation only), PlotMainEffects, and PlotJointEffects.

Usage

```
PlotAll(
   GaSP_model,
   cross_validation,
   visualization,
   y_name = "y",
   y_units = "",
   x_units = NULL,
   se_plot = TRUE,
   y_values = NULL,
   se_values = NULL,
   pch = 1
)
```

Arguments

GaSP_model Object of class GaSPModel, the entire model will be verified but only x and y

will be used.

cross_validation

A data frame returned by CrossValidate.

visualization A list object returned by Visualize.

y_name An optional character string containing the output variable name (for labels).

y_units An optional character string containing the units of the output variable (for la-

hels)

x_units An optional vector of character strings containing the units of the input variables

(for labels).

se_plot An optional boolean indicating whether to make standard-error contour plots.

PlotJointEffects 11

y_values	An optional vector of contour values for the estimated joint effects.
se_values	An optional vector of contour values for the standard errors.
pch	Plotting symbol for plot; default is open circle.

Value

No return value, generates plots.

Examples

```
PlotAll(borehole_fit, borehole_cv, borehole_vis)
```

PlotJointEffects

Plot the estimated joint effects.

Description

Plot the estimated joint effects.

Usage

```
PlotJointEffects(
   joint_effect,
   anova_percent,
   x_units = NULL,
   y_name = "y",
   y_units = "",
   se_plot = TRUE,
   y_values = NULL,
   se_values = NULL
)
```

Arguments

joint_effect	A data frame from Visualize with plotting coordinates for the estimated joint effects.
anova_percent	A data frame from Visualize of ANOVA percentages.
x_units	An optional vector of character strings containing the units of the input variables (for labels).
y_name	An optional character string containing the output variable name (for labels).
y_units	An optional character string containing the units of the output variable (for labels).
se_plot	An optional boolean indicating whether to make standard-error contour plots.
y_values	An optional vector of contour values for the estimated joint effects.
se_values	An optional vector of contour values for the standard errors.

12 PlotMainEffects

Details

Plots are sent to the active device.

Value

No return value, generates plots.

Examples

PlotJointEffects(borehole_vis\$joint_effect, borehole_vis\$anova_percent)

PlotMainEffects

Plot the estimated main effects.

Description

Plot the estimated main effects.

Usage

```
PlotMainEffects(
   main_effect,
   anova_percent,
   x_units = NULL,
   y_name = "y",
   y_units = ""
)
```

Arguments

main_effect A data frame from Visualize with plotting coordinates for the estimated main

effects.

anova_percent A data frame from Visualize of ANOVA percentages.

x_units An optional vector of character strings containing the units of the input variables

(for labels).

y_name An optional character string containing the output variable name (for labels).

y_units An optional character string containing the units of the output variable (for la-

bels).

Details

Plots are sent to the active device. Each plot shows an estimated main effect (red solid line) and pointwise approximate 95% confidence limits (green dashed line).

Value

No return value, generates plots.

PlotPredictions 13

Examples

PlotMainEffects(borehole_vis\$main_effect, borehole_vis\$anova_percent)

PlotPredictions

Plot true versus predicted output.

Description

Plot true versus predicted output (response) made by Predict or CrossValidate.

Usage

```
PlotPredictions(
  y_pred,
  y,
  y,
  y_name = "y",
  y_units = "",
  title = c("Predict", "CrossValidate"),
  pch = 1
)
```

Arguments

y_pred	A data frame of predicted output values made by Predict or CrossValidate.
У	A vector of length equal to the number of rows in y_pred containing the true output values.
y_name	An optional character string containing the output variable name (for labels).
y_units	An optional character string constaining the units of the output variable (for labels).
title	A character string for the name of the function generating the predictions (for an appropriate title): "Predict" from Predict or "CrossValidate" from CrossValidate; "" for no title.
pch	Plotting symbol for plot; default is open circle.

Value

No return value, generates plots.

Examples

```
PlotPredictions(borehole_cv, y, title = "CrossValidate")
PlotPredictions(borehole_pred$y_pred, borehole$y_true, title = "Predict")
```

14 PlotResiduals

וח	_ 1	- 1	\sim
_	()	١.	л.

Normal quantile-quantile (Q-Q) plot.

Description

Normal quantile-quantile (Q-Q) plot of the standardized residuals of predictions from Predict or CrossValidate.

Usage

```
PlotQQ(y_pred, y, y_name = "y")
```

Arguments

y_pred A data frame of predicted output values made by Predict or CrossValidate.
 y A vector of length equal to the number of rows in y_pred containing the true output values.
 y_name An optional character string containing the output variable name (for labels).

Value

No return value, generates plots.

Examples

```
PlotQQ(borehole_cv, y)
```

PlotResiduals

Plot residuals versus each input variable.

Description

Plot residuals versus each input variable.

Usage

```
PlotResiduals(
    x,
    y_pred,
    y,
    x_units = NULL,
    y_name = "y",
    y_units = "",
    pch = 1
)
```

PlotStdResiduals 15

Arguments

X	A data frame with number of rows equal to the number of rows in y_pred containing the input (explanatory) variables.
y_pred	A data frame of predicted output values made by Predict or CrossValidate.
У	A vector of length equal to the number of rows in y_pred containing the true output values.
x_units	An optional vector of character strings containing the units of the input variables in \mathbf{x} (for labels).
y_name	An optional character string containing the output variable name (for labels).
y_units	An optional character string constaining the units of the output variable (for labels).
pch	Plotting symbol for plot; default is open circle.

Value

No return value, generates plots.

Examples

```
PlotResiduals(x, borehole_cv, y)
```

PlotStdResiduals

Plot standardized residuals versus predictions.

Description

Plot standardized residuals versus predictions made by Predict or CrossValidate.

Usage

```
PlotStdResiduals(
   y_pred,
   y,
   y_name = "y",
   y_units = "",
   title = c("Predict", "CrossValidate"),
   pch = 1
)
```

16 Predict

Arguments

y_pred	A data frame of predicted output values made by Predict or CrossValidate.
У	A vector of length equal to the number of rows in y_pred containing the true output values.
y_name	An optional character string containing the output variable name (for labels).
y_units	An optional character string constaining the units of the output variable (for labels).
title	A character string for the name of the function generating the predictions (for an appropriate title): "Predict" from Predict or "CrossValidate" from CrossValidate; "" for no title.
pch	Plotting symbol for plot; default is open circle.

Value

No return value, generates plots.

Examples

PlotStdResiduals(borehole_cv, y, title = "CrossValidate")

Predict	<i>Predict from a</i> GaSPModel <i>object</i> .

Description

Predict from a GaSPModel object.

Usage

```
Predict(GaSP_model, x_pred, generate_coefficients = c(FALSE, TRUE))
```

Arguments

GaSP_model Object of class GaSPModel.

x_pred A data frame containing the values of the input variables at which to predict the

output.

generate_coefficients

A boolean indicating whether coefficients for further external predictions are

generated.

Value

A list with the following elements:

y_pred A data frame with two columns: the predictions Pred and their standard errors

SE.

pred_coeffs A vector of coefficients for further predictions; NULL if generate_coefficients

is FALSE.

RMSE 17

Note

The vector of prediction coefficients in pred_coeffs can be used as follows. Let c denote the coefficients and let r denote a vector with element i containing the correlation between the output at a given new point and the output at training point i. Then the prediction for the output at the new point is the dot product of c and r.

RMSE computes the root mean squared error of the predictions. PlotPredictions and PlotResiduals plot the predictions or their residuals; PlotStdResiduals and PlotQQ plot the standardized residuals.

Examples

```
borehole_pred <- Predict(
  GaSP_model = borehole_fit,
  x_pred = borehole$x_pred,
  generate_coefficients = TRUE
)</pre>
```

RMSE

Calculate the root mean squared error (RMSE) of prediction

Description

Calculate the root mean squared error (RMSE) of prediction

Usage

```
RMSE(y_pred, y_true, normalized = FALSE)
```

Arguments

y_pred A vector of predicted output values.

y_true A vector of true output values.

normalized An optional boolean: if TRUE, the RMSE is normalized by dividing it by the

standard deviation of y_true.

Value

The RMSE or normalized RMSE.

Examples

```
RMSE(borehole_pred$y_pred$Pred, borehole$y_true)
RMSE(borehole_cv$Pred, y)
```

18 Visualize

Visualize	Visualize a GaSPModel object.	

Description

Carry out a functional analysis of variance (ANOVA) of a GaSPModel object and generate plotting coordinates for its estimated main and 2-input joint effects.

Usage

```
Visualize(GaSP_model, x_description, main_percent = 0, interaction_percent = 0)
```

Arguments

GaSP_model Object of class GaSPModel.

x_description A data frame describing the input variables. See DescribeX.

main_percent An optional minimum percentage of variation explained by an input's main ef-

fect to return the effect's plotting coordinates; the default of zero gives plotting

coordinates for all inputs.

interaction_percent

An optional minimum percentage of variation explained by the interaction effect of a pair of inputs to return the plotting coordinates for their joint effect (main effects plus interaction effect); the default of zero gives plotting coordinates for

all pairs of inputs.

Details

If there are many inputs, to avoid excessive plotting of many trivial joint effects set interaction_percent = 1 say.

Value

A list with the following elements:

anova_percent A data frame containing the ANOVA percentages for all main effects and 2-input

interaction effects.

main_effect A data frame with plotting coordinates for the estimated main effects.

joint_effect A data frame with plotting coordinates for the estimated 2-input joint effects.

total_percent Total percentage of the prediction variation accounted for by all main effects and

2-input interaction effects.

average Overall average of the prediction function, averaged with respect to all inputs.

SE_average Standard error of the overall average.

Visualize 19

References

Schonlau, M. and Welch, W.J. (2006), "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization", in *Screening: Methods for Experimentation in Industry, Drug Discovery, and Genetics*, Dean. A. and Lewis, S., eds., pp. 308-327, Springer, New York, doi:10.1007/0-387-28014-6_14.

Examples

borehole_vis <- Visualize(borehole_fit, borehole_x_desc)</pre>

Index

```
* datasets
    borehole, 2
borehole, 2
CrossValidate, 3, 9, 10, 13, 16
DescribeX, 3, 18
Fit, 4, 9
GaSPModel, 3–5, 7, 10, 16, 18
PlotAll, 10
{\tt PlotJointEffects}, {\tt 11}
PlotMainEffects, 12
PlotPredictions, 3, 13, 17
PlotQQ, 3, 14, 17
PlotResiduals, 3, 14, 17
PlotStdResiduals, 3, 15, 17
Predict, 9, 13, 16, 16
RMSE, 3, 17, 17
Visualize, 9–12, 18
```